LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of nonylphenol induced oxidative stress on apoptosis and autophagy in rat ovarian granulosa cells.

Photo from wikipedia

Nonylphenol (NP) is a kind of environmental endocrine disruptors which is generally recognized to cause female reproductive toxicity, but its basic mechanism has not been fully elucidated. In this study,… Click to show full abstract

Nonylphenol (NP) is a kind of environmental endocrine disruptors which is generally recognized to cause female reproductive toxicity, but its basic mechanism has not been fully elucidated. In this study, granulosa cells (GCs) were treated with 0-70 μM NP for 24 h, the cell viability of GCs was reduced significantly, as well as increased cell apoptosis with G2/M arrest. Furthermore, NP significantly induced autophagy and the production of reactive oxygen species (ROS). However, these phenomenons were inhibited by blocking the production of ROS with N-Acetyl-l-cysteine (NAC) administration. Intriguingly, the inhibition of autophagy with 3-Methyladenine (3-MA) could enhance the apoptosis induced by NP. Moreover, the down regulating of p-Akt/Akt, p-mTOR/mTOR and subsequent up-regulation of p-AMPK/AMPK induced by NP can be rescued by pretreatment of NAC. Our findings suggested that NP promotes rat ovarian GCs apoptosis and autophagy simultaneously, which may involve the activation of ROS-dependent Akt/AMPK/mTOR pathway. Whatever, the activation of autophagy is likely to develop a protective mechanism to improve the apoptosis of rat ovarian GCs induced by NP.

Keywords: apoptosis autophagy; granulosa cells; rat ovarian; apoptosis

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.