LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The sequential dewatering and drying treatment enhanced the potential favorable effect of microbial communities in drinking water treatment residue for environmental recycling.

Photo from wikipedia

The beneficial recycling of drinking water treatment residue (DWTR) for environmental remediation has received increasingly interests; whereas, the reported potential effect of microbial communities in different DWTR was ambiguous, which… Click to show full abstract

The beneficial recycling of drinking water treatment residue (DWTR) for environmental remediation has received increasingly interests; whereas, the reported potential effect of microbial communities in different DWTR was ambiguous, which was unfavorable for the beneficial recycling. This study hypothesized that the varied treatment to DWTR in different waterworks induced the ambiguous effect; accordingly, responses of microbial communities in DWTR to the sequential dewatering and drying treatment were determined based on samples from three waterworks, in combination with 180-d incubation tests. The results showed that the microbial communities varied remarkably in different DWTR before being dewatered (DWTS). However, after dewatering, the increased microbial diversities were observed, and the microbial communities exhibited higher similarities among the dewatered DWTR from different waterworks; furthermore, the dewatered DWTR with subsequent drying treatment enriched more bacteria genus with potential environmental functions after incubation tests. The variations of microbial communities were closely related to DWTR properties, such as pH, organic matter, metals, P, and water extractable nutrients. Further analysis indicated that with maintaining high adsorption capability of DWTR, the dewatering treatment tended to retain specific microbial communities that may be induced by the applied similar techniques in different waterworks; the accumulated nutriments due to drying treatment and the stable DWTR pH enhanced the potential functional bacteria enrichment. Overall, the dewatering and drying treatment led to microbial communities with generality in different DWTR and increased the potential favorable microbial effect, promoting DWTR recycling in environmental remediation.

Keywords: treatment; effect; drying treatment; dwtr; microbial communities; dewatering drying

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.