LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanisms and kinetics of greywater treatment using biologically active granular activated carbon.

Photo from wikipedia

The high adsorption capacity of granular activated carbon (GAC) makes it an effective biofilter media for greywater (wastewater generated in households and office buildings from streams without fecal contamination). This… Click to show full abstract

The high adsorption capacity of granular activated carbon (GAC) makes it an effective biofilter media for greywater (wastewater generated in households and office buildings from streams without fecal contamination). This study investigates the mechanisms and kinetics of greywater treatment using biologically active GAC (BAC). This was achieved by assessing the role of each of the sorption and biodegradation mechanisms to the overall treatment process, characterizing and modelling the adsorption capacity of the media, and analysing and modelling the kinetics of adsorption. The biodegradation mechanism was found to contribute less than 26% to the overall treatment process with biomass density of 178.71 ± 14.12 mg g-1 BAC, whereas sorption mechanisms were responsible for the remaining greywater treatment. The Freundlich isotherm was found to best-represent the equilibrium adsorption data with Freundlich constant and intensity parameter of 1.48 × 10-5 L g-1 and 0.39, respectively. Pseudo-second order and intraparticle diffusion models were created to fit the kinetics adsorption with rate constant values of 0.12 g mg-1 h-1 and 1.91 mg g-1 h-0.5 during the first 2 h of the experiment and 0.08 g mg-1 h-1 and 0.50 mg g-1 h-0.5 onwards, respectively. Intraparticle pore diffusion was determined to be the rate limiting step of the greywater treatment; some mass transfer resistance was observed due to external film diffusion at lower substrate gradients during greywater treatment. This study improves our understanding of the behaviour of GAC biofilters through understanding their treatment mechanisms and kinetics, leading to more efficient greywater treatment.

Keywords: adsorption; granular activated; treatment; greywater treatment; mechanisms kinetics; activated carbon

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.