The substantial increase in the occurrence of microplastics (MPs) in the aquatic ecosystem has been recognized as an emerging concern today. Studies have revealed the toxicity of microplastics on behavior,… Click to show full abstract
The substantial increase in the occurrence of microplastics (MPs) in the aquatic ecosystem has been recognized as an emerging concern today. Studies have revealed the toxicity of microplastics on behavior, physiology, and reproduction of fishes. Despite several reports, there are inadequate literature reports on the impact of microplastics on aquatic forms at the molecular level. The present study was aimed to investigate the adverse effects of polystyrene microplastics (PS-MPs) in adult zebrafish model system. Healthy fishes were exposed to different concentrations (10 and 100 μg L-1) of PS-MPs for 35 d. The results revealed that PS-MPs exposure induced ROS (Reactive oxygen species) generation disrupting the antioxidant defense system, hepatic enzymology, and neurotransmission. Correspondingly, the histological studies showed PS-MPs induced histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the brain and liver tissues of zebrafish. Furthermore, PS-MPs exposure significantly upregulated the expressions of gstp1, hsp70l, and ptgs2a gene along with the downregulation of cat, sod1, gpx1a, and ache genes. Therefore, the present study illustrates the potential of PS-MPs to induce different grades of toxic impacts in fishes by altering its metabolic mechanism, histological architecture, and gene regulation pattern through ROS induced oxidative stress.
               
Click one of the above tabs to view related content.