LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calcium carbonate deposits and microbial assemblages on microplastics in oligotrophic freshwaters.

Photo from wikipedia

Microplastics are solid polymer particles with a wide variety of surface properties, found in most waterbodies, and known as carriers of distinct microbial communities affecting the fate of the particles… Click to show full abstract

Microplastics are solid polymer particles with a wide variety of surface properties, found in most waterbodies, and known as carriers of distinct microbial communities affecting the fate of the particles in the environment. Little is known about the formation of mineral deposits on microplastics and how these deposits connect to microbial assemblages and affect the physicochemical properties of the particles. In addition, most of the available research on this topic is based on large microplastics with sizes between 100 μm and up to 5 mm, rather than the small microplastics often found in drinking water sources. To narrow this gap in our understanding of environmental effects on small microplastics, two types of small microplastics made of two distinct polymers, poly(methyl methacrylate) (PMMA) and poly(tetrafluoroethylene) (PTFE) with sizes ranging from 15 to 150 μm, were incubated for six months in unprocessed and processed drinking water with increasing ionic concentration to allow for the formation of mineral deposits and microbial assemblages. Spatially resolved analysis with fluorescent in situ hybridization and confocal Raman microscopic imaging revealed deposits of calcium carbonates and scattered microbial assemblages on all microplastics, with structure, extend, and microbial association with the carbonates depending on the respective microplastic. Notably, PTFE floatation was overcome after three months in unprocessed drinking water but remained unchanged in processed drinking water, whereas PMMA appeared unaffected, indicating that the fate of microplastics in the environment may depend on polymer type and the encountered aquatic conditions forming mineral and microbial attachments to the particle surface.

Keywords: deposits microbial; microbial assemblages; small microplastics; drinking water; assemblages microplastics

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.