LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae).

Photo by aaronburden from unsplash

The honeybee Apis mellifera is an important pollinator that, similarly to other bees, undergoes colony losses due to several problems, including the use of pesticides in the agriculture. In addition… Click to show full abstract

The honeybee Apis mellifera is an important pollinator that, similarly to other bees, undergoes colony losses due to several problems, including the use of pesticides in the agriculture. In addition to direct mortality, pesticides cause side-effects in some non-target organs, such as the midgut, which is the main organ for digestion and absorption. Spiromesifen is a pesticide used to control mites and whiteflies, which can be ingested by bees feeding on contaminated floral resources. This study evaluated the histopathological and cytological effects of the ingestion of spiromesifen on the midgut of A. mellifera workers. The bees were exposed per os to the field recommended dose of spiromesifen, and the midgut was analyzed after 24h and 48h of exposure to the pesticide. The midgut has a single layer of digestive cells, with spherical nucleus, nests of regenerative cells and layers of peritrophic matrix in the lumen. Bees treated with spiromesifen presented histological and cytological changes in the midgut, including disorganization of the epithelial architecture, release of cell fragments to the lumen, accumulation of mitochondria in the apical cytoplasm, alteration of the basal labyrinth, changes in the rough endoplasmic reticulum and cell degeneration. The occurrence of damage in the digestive cells of the A. mellifera midgut indicates that spiromesifen does not cause mortality in honeybees, but its side-effects can damage the midgut, which may affect the longevity and behavior of this pollinator.

Keywords: honeybee apis; apis mellifera; changes midgut; spiromesifen; mellifera

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.