LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfate-rich reactors.

Photo from wikipedia

The identification of dominant microbes in anaerobic mercury (Hg) methylation, methylmercury (MeHg) demethylation, and methane oxidation as sulfate-reducing bacteria, methanogens or, probably, anaerobic methanotrophic archaea (ANMEs) is of great interest.… Click to show full abstract

The identification of dominant microbes in anaerobic mercury (Hg) methylation, methylmercury (MeHg) demethylation, and methane oxidation as sulfate-reducing bacteria, methanogens or, probably, anaerobic methanotrophic archaea (ANMEs) is of great interest. To date, however, the interrelationship of bacteria and archaea involved in these processes remains unclear. Here, we demonstrated the dynamics of microorganisms participating in these processes. Anaerobic fixed-bed reactors were operated with swine manure and sludge to produce methane stably, and then, sulfate (reactor C), sulfate and Hg(II) (reactor H), and sulfate and MeHg (reactor M) were added, and the reactors were operated for 120 d, divided equally into four periods, P1-P4. The bacterial compositions changed nonsignificantly, whereas Methanosaeta in reactors H and M decreased significantly, revealing that it was irrelevant for Hg transformation. The abundances of Syntrophomonadaceae, Methanoculleus, Candidatus Methanogranum and Candidatus Methanoplasma increased continuously with time; these species probably functioned in these processes, but further evidence is needed. Desulfocella and Desulfobacterium dominated first but eventually almost vanished, while the dominant archaeal genera Methanogenium, Methanoculleus and Methanocorpusculum were closely related to ANME-1 and ANME-2. PLS-DA results indicated that both bacteria and archaea in different periods in the three reactors were clustered separately, implying that the microbial compositions in the same periods were similar and changed markedly with time.

Keywords: sulfate; bacteria archaea; mercury methylation; methane oxidation; anaerobic mercury

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.