LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of pesticide retention time in reversed-phase liquid chromatography using quantitative-structure retention relationship models: A comparative study of seven molecular descriptors datasets.

Photo by ozgomz from unsplash

Predicting chromatographic retention times of pesticides has become more and more important for suspect and non-target screening. Indeed, high-resolution mass spectrometry hyphenated (HRMS) to liquid chromatography (LC) are of growing… Click to show full abstract

Predicting chromatographic retention times of pesticides has become more and more important for suspect and non-target screening. Indeed, high-resolution mass spectrometry hyphenated (HRMS) to liquid chromatography (LC) are of growing interest for research and monitoring of pesticides, their metabolites and transformation products. The development of quantitative structure-retention relationship models require selecting the most adequate and best set of molecular descriptors and the best machine-learning algorithm. Here, we used seven molecular descriptor sets extracted from four well-known studies and applied them to roughly 800 pesticides and their chromatographic reversed-phase retention times. We used and optimized five different machine-learning algorithms with these descriptor sets to carry out predictions. Our results show that a support-vector machine regression algorithm with only eight molecular descriptors gave the best compromise between the number of molecular descriptors, processing time and model complexity to optimize prediction performance for this specific gradient LC method.

Keywords: retention relationship; quantitative structure; molecular descriptors; structure retention; liquid chromatography; retention

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.