LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pilot study on long-term simulation of PCB-153 human body burden in the Tibetan Plateau.

Photo from wikipedia

The historical body burden of 2,2',4,4',5,5'-Hexachlorobiphenyl (PCB-153) in the Tibet Autonomous Region (TAR) population was simulated on the basis of localized exposure factors and dietary data, which present a preliminary… Click to show full abstract

The historical body burden of 2,2',4,4',5,5'-Hexachlorobiphenyl (PCB-153) in the Tibet Autonomous Region (TAR) population was simulated on the basis of localized exposure factors and dietary data, which present a preliminary attempt to quantify the influence of high lipid dietary patterns, grain transported from inland China, and atmospheric transport on human exposure to polychlorinated biphenyls (PCBs). Herdsman with large animal-based food consumption exhibited the highest body burden that was comparable with that in inland China. The body burden of other residents was within the range of low-to-moderate level. High-lipid diet of urban residents caused their body burden being 1.5--2.5 times higher than that of rural residents. The consumption of grain transported from higher polluted areas can also result in 50%-115% increase in the body burden of Tibetan rural residents compared with when local produced grain is consumed, suggesting that the influence of grain logistic can be as important as dietary patterns. The exposure risk for rural residents associated with grain logistic should not be ignored even if they consumed less high-lipid food. By splitting the inventory, over 80% of the PCB-153 pollution in the TAR was identified to be induced by atmospheric transport from foreign countries. However, the grain logistic contributed approximately half of the overall human body burden of Tibetan residents recently if assuming that the grain shortage was supplied by adjacent Sichuan Province. The combined influence of high-lipid diet, atmospheric transport and food logistic highlights the difficulties of risk control in remote regions that accumulate POPs, such as TAR.

Keywords: pcb 153; burden tibetan; grain; body; body burden

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.