Cement-soda residue (CSR) has been proven to be an effective binder for treating heavy metal-contaminated soils, and the durability is its most important characteristic. In this study, the effects of… Click to show full abstract
Cement-soda residue (CSR) has been proven to be an effective binder for treating heavy metal-contaminated soils, and the durability is its most important characteristic. In this study, the effects of acid rain (AR) on the leaching behavior of CSR-solidified/stabilized, zinc-contaminated soils were investigated using flexible-wall soil column leaching tests. After leaching, some parameters were determined such as the unconfined compressive strength (UCS) and permeability coefficient of the samples, the concentrations of Zn2+ and Ca2+ in the filtrate. The test results showed that after AR leaching, the UCS of the solidified soil samples decreased and the permeability coefficient increased, while the zinc concentration in the filtrate always met the third grade of the applicable standard, the Chinese National Environmental Quality Standards (<1 mg⋅L-1). To reveal the binding mechanism, scanning electron microscopy (SEM) and mercury intrusion testing (MIP) were used to observe the microscopic characteristics of the soil samples. At the micro scale, the MIP and SEM results confirmed that the hydration products in the soil samples-hydrated calcium silicate, calcium hydroxide, and calcium zincate hydrate-partially dissolved during AR leaching, resulting in the loss of their internal structure. Consequently, the high alkalinity of the soda residue contributed to H+ neutralization in the AR leaching agent, indicating that soda residue can not only solidify heavy metal zinc ions effectively but can also buffer the erosive effect of AR on soil.
               
Click one of the above tabs to view related content.