LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects and mechanisms of modified biochars on microbial iron reduction of Geobacter sulfurreducens.

Photo from wikipedia

Biochar was proved as an electron shuttle to facilitate extracellular electron transfer (EET) of electrochemically active bacteria (EAB); however, its underlying mechanism was not fully understood. In this study, we… Click to show full abstract

Biochar was proved as an electron shuttle to facilitate extracellular electron transfer (EET) of electrochemically active bacteria (EAB); however, its underlying mechanism was not fully understood. In this study, we aimed to further explore how the regulation of surface functional groups of biochar would affect the microbial iron reduction process of Geobacter sulfurreducens as a typical EAB. Two modified biochars were achieved after HNO3 (NBC) and NaBH4 (RBC) pretreatments, and a control biochar was produced after deionized water (WBC) washing. Results showed that WBC and RBC significantly accelerated microbial iron reduction of G. sulfurreducens PCA, while had no effect in the final Fe (II) minerals (e.g., vivianite and green rust (CO32-)). Besides, Brunauer-Emmett-Teller (BET) surface area, electron spin resonance (ESR) and electrochemical measurements showed that larger surface area, lower redox potential, and more redox-active groups (e.g., aromatic structures and quinone/hydroquinone moieties) in RBC explained its better electron transfer performance comparing to WBC. Interestingly, NBC completely suppressed the Fe (III) reduction process, mainly due to the production of reactive oxygen species which inhibited the growth of G. sulfurreducens PCA. Overall, this work paves a feasible way to regulate the surface functional groups for biochar, and comprehensively revealed its effect on EET process of microorganisms.

Keywords: reduction; iron reduction; geobacter sulfurreducens; modified biochars; microbial iron

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.