LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes.

Photo from wikipedia

Pyrolysis can not only effectively dispose of plastic wastes but also reclaim valuable chemicals and biochar. However, the production and release of second pollutants, particularly chlorine-containing products, have been neglected.… Click to show full abstract

Pyrolysis can not only effectively dispose of plastic wastes but also reclaim valuable chemicals and biochar. However, the production and release of second pollutants, particularly chlorine-containing products, have been neglected. The mechanism for the transformation of chlorine during the pyrolysis of plastic wastes remains unclear. Herein, a thermogravimetric Fourier transform infrared mass spectrometry technology was used to investigate the migration and transformation of substances during the pyrolysis of polyvinyl chloride (PVC) plastic from 200 °C to 900 °C with heating rates of 5, 50, 100, 150, and 200 K min-1. Results show the first stage of weight loss is at 200 °C-360 °C, where the dehydrochlorination of PVC mainly occurred, accompanied by the formation of conjugated double bonds and a small number of hydrocarbon compounds. The second stage of weight loss is at 360 °C-550 °C, where the breakage and rearrangement of the long polyethene chain may occur. Kinetics analysis shows the higher activation energy value is in the second stage, which indicates that the second stage reaction is less likely to occur and the Flynn-Wall-Ozawa method is more suitable for the study of plastic pyrolysis kinetics. This study suggests that second pollutants can be minimized during controllable pyrolysis.

Keywords: pyrolysis; containing products; chlorine containing; plastic wastes; stage; pyrolysis plastic

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.