LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Techno-economic assessment of a sustainable and cost-effective bioprocess for large scale production of polyhydroxybutyrate.

Photo from wikipedia

The rapid depletion of crude-oil resource which sustains a conventional petroleum refinery together with its environmental impact has led to the search for more sustainable alternatives. In this context, biorefinery… Click to show full abstract

The rapid depletion of crude-oil resource which sustains a conventional petroleum refinery together with its environmental impact has led to the search for more sustainable alternatives. In this context, biorefinery serves to fulfil the aim by utilizing waste resources. Hence, this study focused on techno-economic assessment of PHB production at large scale from waste carob pods in a closed-loop biorefinery setup. Firstly, the use of pure sugars in SC1 was shifted to use of carob pods as feedstock in SC2, upgradation of stirred tank bioreactor with novel annular gap bioreactor in SC3 and replacing the conventional centrifugation process with the upcoming ceramic membrane separation process in SC4. An Aspen plus™ flowsheet was developed by including the aforementioned novel strategies for PHB production. The effectiveness of PHB production under various scenarios was evaluated based on its pay-out period and turnover accumulated at the end of 7th year of a PHB plant operation. Instead of pure sugars as the feedstock (SC1), carob pod extract (SC2) reduced the pay-out period from 12.6 to 6.8 years. Likewise, switching onto ABR from the conventional STBR further decreased the pay-out period to 4.8 years. Finally, the use of ceramic membranes (SC4) instead of centrifugation resulted in a similar pay-out period of 4.8 years with increased turnover of about 1.4 billion USD. Thus, the use of carob pods along with an improved PHB titre in ABR and incorporation of affordable ceramic membrane technology for PHB rich biomass separation resulted in a highly cost-effective PHB production strategy.

Keywords: large scale; production; phb production; techno economic; economic assessment; phb

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.