LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter.

Photo by artbyhybrid from unsplash

Aquatic macrophytes have been widely employed for in-situ phytoremediation of cadmium (Cd) polluted sediments. But, little is known about the responses of rhizosphere bacteria and their interspecific interactions to phytoremediation.… Click to show full abstract

Aquatic macrophytes have been widely employed for in-situ phytoremediation of cadmium (Cd) polluted sediments. But, little is known about the responses of rhizosphere bacteria and their interspecific interactions to phytoremediation. In this study, the α-diversity, community composition, co-occurrence network and keystone species of sediment bacteria in rhizosphere zones of two typical macrophytes, Hydrilla verticillata and Elodea canadensis, were investigated using 16S rRNA gene high-throughput sequencing. The results showed that after fifty days of phytoremediation, a group of specialized sediment bacteria were assembled in the rhizosphere zones closely associated with different host macrophytes. Rhizosphere micro-environments, i.e., the increases of redox potential and organic matter and the decreases of pH, nitrogen and phosphorus, reduced bacterial α-diversity through niche-based species-sorting process, which in turn reduced interspecific mutualistic relationships. But meanwhile, benefiting from the nutrients supplied from macrophyte roots, more bacterial species survived in the highly Cd-contaminated sediments (50 mg kg-1). In addition, the co-occurrence network revealed that both macrophytes harbored two same keystone bacteria with the high betweenness centrality values, including the family Pedosphaeraceae (genus_unclassified) and genus Parasegetibacter. Their relative abundances were up to 28-fold and 25-fold higher than other keystone species, respectively. Furthermore, these two keystone bacteria were metabolic generalists with vital ecological functions, which posed significant potentials for promoting plant growth and tolerating Cd bio-toxicity. Therefore, the identified keystone rhizobacteria, Pedosphaeraceae and Parasegetibacter, would be potential microbial modulations applied for the future optimization of phytoremediation in Cd-contaminated sediment.

Keywords: pedosphaeraceae; keystone; parasegetibacter; phytoremediation cadmium; phytoremediation; two keystone

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.