The molecular mechanisms through which dinoflagellates adapt to nitrate fluctuations in aquatic environments remain poorly understood. Here, we sequenced the full-length cDNA of a nitrate transporter (NRT) gene from the… Click to show full abstract
The molecular mechanisms through which dinoflagellates adapt to nitrate fluctuations in aquatic environments remain poorly understood. Here, we sequenced the full-length cDNA of a nitrate transporter (NRT) gene from the harmful marine dinoflagellate Prorocentrum minimum Schiller. The cDNA length was 2431 bp. It encoded a 529-amino acid protein, which was phylogenetically clustered with proteins from other dinoflagellates. Nitrate supply promoted cell growth up to a certain concentration (∼1.76 mM) but inhibited it at higher concentrations. Interestingly, at the inhibitory concentrations, nitrite levels in the medium were considerably increased. Nitrate concentration affected the expression of PmNRT, nitrite transporter (PmNiRT), nitrate reductase (PmNR), and nitrite reductase (PmNiR). Specifically, PmNRT was upregulated after 24 h, with ∼6-fold change compared with the control level, in both nitrate-depleted and nitrate-repleted cultures. In addition, PmNR transcript levels increased to the maximum of 4-fold at 48 h but decreased thereafter. In contrast, PmNiR levels remained unchanged in both nitrate-repleted and nitrate-depleted cultures. Therefore, P. minimum likely copes with nitrate fluctuations in its environment by regulating a set of genes responsible for nitrate uptake.
               
Click one of the above tabs to view related content.