LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair.

Photo from wikipedia

The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for… Click to show full abstract

The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for their remarkable adaptability with three-dimensional polymeric structure. They are capable of mimicking tissue properties, which plays a key role in tissue engineering. Besides, concerns for environmental issues have motivated scientists to move toward eco-friendly materials and natural polymer-based materials for applications in the tissue engineering field these days. Therefore, cellulose as an appropriate substitute for common polymers based on crude coal, animal, and human-derived biomolecules is greatly considered for various applications in biomedical fields. Generally, natural biomaterials lack good mechanical properties for skin tissue engineering. But using modified cellulose-based biopolymers tackles these restrictions and prevents immunogenic responses. Moreover, tissue engineering is a quick promoting field focusing on the generation of novel biomaterials with modified characteristics to improve scaffold function through physical, biochemical, and chemical tailoring. Also, nanocellulose with a broad range of applications, particularly in tissue engineering, advanced wound dressing, and as a material for coupling with drugs and sensorics, has been reviewed here. Moreover, the potential cytotoxicity and immunogenicity of cellulose-based biomaterials are addressed in this review.

Keywords: engineering; based biomaterials; plant cellulose; cellulose based; tissue engineering

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.