LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phototransformation of tetrabromobisphenol A in saline water under simulated sunlight irradiation.

Photo by kellysikkema from unsplash

The widespread use of halogenated flame retardants in recent years has led to the accumulation of TBBPA in water, which may cause potential harm to living organisms. The phototransformation of… Click to show full abstract

The widespread use of halogenated flame retardants in recent years has led to the accumulation of TBBPA in water, which may cause potential harm to living organisms. The phototransformation of the flame retardant TBBPA in alkaline saline water under simulated sunlight irradiation was investigated. The effects of abiotic factors such as the initial concentration of TBBPA, chloride ion concentration, solution pH, inorganic anions and cations, dissolved organic matter (DOM) were studied. The results showed that the phototransformation rate of TBBPA accelerated with the decrease of the initial concentration of TBBPA, the increase of chloride ion concentration and solution pH. The scavenging experiments showed that •OH, 1O2, O2•- and 3TBBPA* all participated in the phototransformation of TBBPA. The presence of NO3-, CO32-, SO42-, Mg2+, Ca2+, Fe3+ and fulvic acid (FA) all inhibited the phototransformation of TBBPA in the present study. The phototransformation products of TBBPA were detected by liquid chromatography-mass spectrometry (LC-MS), and the phototransformation pathways were proposed. This is the first report on the photo-induced generation of halogen exchange products from TBBPA in saline solutions, which will contribute to a better understanding of the environmental behavior and risks of BFRs in water.

Keywords: phototransformation; tbbpa; simulated sunlight; saline water; water simulated

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.