LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acceleration of biotic decolorization and partial mineralization of methyl orange by a photo-assisted n-type semiconductor.

Photo by kellysikkema from unsplash

In this study, a n-type semiconductor perylene diimide (PDI) was coupled with biodegradation to accelerate the biotic decolorization and mineralization of methyl orange (MO) under light condition. The decolorization rates… Click to show full abstract

In this study, a n-type semiconductor perylene diimide (PDI) was coupled with biodegradation to accelerate the biotic decolorization and mineralization of methyl orange (MO) under light condition. The decolorization rates (k1) of MO in pure and mixed cultures with PDI were promoted by 1.35 and 1.79 folds, respectively, comparing to the cultures without PDI. The total mineralization efficiency of 4-aminobenzenesulfonic acid (4-ABA) was achieved to 22.10 ± 0.84% when in the presence of PDI. The quinone-like group and oxidation-reduction capacity of PDI were detected by Fourier transform infrared spectroscopy and cyclic voltammetry, respectively, but the enhancement on the biotic decolorization of MO was not promoted under dark condition indicating that microbial extracellular electron transfer was not promoted. The 4-ABA was confirmed to be partially mineralized when the PDI exposure to light. The generated free radicals i.e., h+, ⸱OH, was demonstrated as active species to accelerate the decolorization and mineralization of MO by ESR test and radical quenching experiments. The bond breaking of MO and 4-ABA molecules were successfully predicted by density functional theory calculations and were further proven by liquid-chromatography mass spectra. The synergistic mechanism of decolorization and mineralization of MO by microorganism and photocatalysis was proposed. Moreover, High-throughput sequencing and Live/dead cell results indicated that the presence of PDI has no obvious toxicity to the microorganisms and will not change the microbial communities during the short-term treatment period. The results of study provided a biological intimate photocatalytic material and suggested a feasible way for its combination with biodegradation of azo dyes.

Keywords: mineralization methyl; biotic decolorization; type semiconductor; mineralization; pdi; decolorization

Journal Title: Chemosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.