LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Successful and stable operation of anaerobic thermophilic co-digestion of sun-dried sugar beet pulp and cow manure under short hydraulic retention time.

Photo from wikipedia

This work consists of a long-term (621 days) experimental study about biogas production from sun dried sugar beet pulp and cow manure. Thermophilic (55 °C) anaerobic co-digestion was performed in semi-continuous… Click to show full abstract

This work consists of a long-term (621 days) experimental study about biogas production from sun dried sugar beet pulp and cow manure. Thermophilic (55 °C) anaerobic co-digestion was performed in semi-continuous reactors, testing ten hydraulic retention times (30-3 days) (HRTs) and organic loading rates (2-24 gVS/Lreactor∙d) (OLRs). Results showed that the best global system performance (regarding stability, biogas production, and organic matter removal) was achieved at an HRT as short as 5 days (OLR of 12.47 gVS/Lreactor∙d) with a biogas yield of 315 mL/gVSadded. The gradual OLR increase allowed system control and time-appropriate intervention, avoiding irreversible process disturbances and maintaining admissible acidity/alkalinity ratios (<0.8) for HRTs ranging from 30 to 4 days. The accumulation of acetic acid was the main cause of the process disturbance observed at short HRTs. It was deduced that for the HRT of 3 days, the methane productivity was mainly owing to the hydrogen-utilizing methanogens pathway. This research clearly shows how an adequate combination of agro-industrial wastes and livestock manure could be processed by anaerobic co-digestion in short HRTs with great efficiency and stability and deepens in the understanding of the start-up, stability and optimization of the co-digestion.

Keywords: sun dried; sugar beet; digestion; manure; beet pulp; dried sugar

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.