LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired facilitation of intrinsically conductive polymers: Mediating intra/extracellular electron transfer and microbial metabolism in denitrification.

Photo by cdc from unsplash

Intrinsically conductive polymers, polyaniline and polyaniline sulfonate (PASAni) were used to explore their effect on denitrification. Denitrification was accelerated 1.90 times by 2 mM PASAni and the possible mechanisms were mainly… Click to show full abstract

Intrinsically conductive polymers, polyaniline and polyaniline sulfonate (PASAni) were used to explore their effect on denitrification. Denitrification was accelerated 1.90 times by 2 mM PASAni and the possible mechanisms were mainly attributed to the accelerated electron transfer and the enhanced microbial metabolism activity. Intracellular electron transfer was accelerated by PASAni and the acceleration sites were from NADH to coenzyme Q (CoQ), quinone loop, from Complex II to CoQ and from QH2 to Cyt. c1. Extracellular electron transfer was accelerated because PASAni promoted more secretion of redox species and PASAni embedded in extracellular polymeric substance (EPS). Moreover, PASAni may pass across cell membrane like type IV pilus, which provided more electron transfer pathways. Microbial metabolism activity was also enhanced by PASAni, which was reflected in the increased nitrate/nitrite reductase activity (236.13/155.43%), electron transfer system activity (112.49%), adenosine triphosphate level (133.41%) and EPS content (189.06%). Besides, the enriched Proteobacteria in PASAni supplement system was also conducive to denitrification. This work provided fundamental information for conductive polymers mediating microbial electron transfer and enhancing contaminants biotransformation.

Keywords: microbial metabolism; denitrification; electron transfer; conductive polymers; electron

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.