LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption.

Photo by prophet2018 from unsplash

With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of… Click to show full abstract

With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consideration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as environmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.

Keywords: based nanomaterials; mxene based; nanomaterials potential; overview mxene; adsorption

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.