LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrothermally constructed AgWO4-rGO nanocomposites as an electrode enhancer for ultrasensitive electrochemical detection of hazardous herbicide crisquat.

Photo by bermixstudio from unsplash

The advancements in electrode materials with high efficiency has been prioritized to effectively monitor the presence of harmful pesticides concerning the environment. In such a way, we hydrothermally constructed a… Click to show full abstract

The advancements in electrode materials with high efficiency has been prioritized to effectively monitor the presence of harmful pesticides concerning the environment. In such a way, we hydrothermally constructed a hybrid AgWO4-rGO nanocomposites for the rapid electrochemical detection of crisquat (CQT). The structural, compositional, morphological and topographical characterization for AgWO4-rGO nanocomposites is thoroughly performed to understand its electrocatalytic properties. The AgWO4-rGO nanocomposites are used as an electrode enhancer (rGO@AgWO4/GCE) for the electrochemical investigations towards CQT detection. The results indicated that the rGO@AgWO4/GCE possessed an excellent catalytic activity with a wide linear detection range 1-1108 μM coupled with an ultrasensitive limit of detection (LOD) 0.0661 μM for electrochemical CQT detection. The rGO@AgWO4/GCE CQT sensor also expressed remarkable sensitivity of 0.6306 μAμM-1cm-2 in addition to good selectivity and reproducibility. Furthermore, the commercial CQT, river water, tap water and washed vegetable water are used as a representative for real world analysis using rGO@AgWO4/GCE and results are highly appreciable for the real time CQT detection. Our work proposes a novel hybrid rGO@AgWO4 nanocomposites reinforced electrodes for ultra-trace level CQT detection with good reliability and can be advocated for real time detection of pesticides.

Keywords: detection; rgo agwo4; rgo nanocomposites; agwo4 rgo; rgo

Journal Title: Chemosphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.