LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology, compressibility and viscoelasticity of the mixed lipid monolayers in the presence of β-carotene.

Photo by nci from unsplash

The aim of the present study was to investigate the interfacial behaviour of model biomembranes in the presence of β-carotene (βC). The Langmuir monolayer technique was used to form the… Click to show full abstract

The aim of the present study was to investigate the interfacial behaviour of model biomembranes in the presence of β-carotene (βC). The Langmuir monolayer technique was used to form the mixed lipid film at the air/water interface. Using the surface pressure-area isotherms, the surface potential-area curves and the Brewster angle microscopy the nature of interactions between carotenoid and lipid components of the monolayers was investigated. The results were obtained for complex models of the lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (CHOL). It was found that β-carotene affected the membrane stability, fluidity and rigidity, however this influence varied with the DPPC/CHOL ratio. The membrane permeability which is significant for biological functions was found to be affected by the presence of β-carotene in the membrane. The morphology of mixed films visualized by Brewster angle microscopy was similar for DPPC/CHOL and DPPC/CHOL/βC films indicating incorporation of carotenoid into the film. In contrary to previous reports for individual lipids, we did not observed the aggregation of βC in the mixed lipid monolayer. Moreover, from dilatational rheology experiment we concluded about the significant role of β-carotene in modulation of the elastic behaviour of the membrane, especially in physiologically significant surface pressure, i.e. at π = 30 mN/m.

Keywords: dppc; carotene; microscopy; mixed lipid; presence carotene

Journal Title: Chemistry and physics of lipids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.