The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC… Click to show full abstract
The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately the barrier properties of the SCS were examined. Our studies reveal that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, the modifications improved the barrier function of the SCS.
               
Click one of the above tabs to view related content.