LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailoring the crystal size distribution of an active pharmaceutical ingredient by continuous antisolvent crystallization in a planar oscillatory flow crystallizer

Photo from wikipedia

Abstract An active pharmaceutical ingredient is currently produced in a traditional batch antisolvent crystallization process. Although well-established, this process lacks flexibility to control the crystal size distribution (CSD). Therefore, a… Click to show full abstract

Abstract An active pharmaceutical ingredient is currently produced in a traditional batch antisolvent crystallization process. Although well-established, this process lacks flexibility to control the crystal size distribution (CSD). Therefore, a new process was developed to enable the control of the CSD according to different specifications. This new process was implemented in continuous in a planar oscillatory flow crystallizer (planar-OFC). In this work, the main goal was to enable the production of small crystals to meet very specific formulation requirements and, simultaneously, promote the aggregation of these small particles to optimize the filtration operation. First, the operating conditions were optimized for continuous operation. Then, the planar-OFC was divided into two spatially independent sections, the nucleation zone (where nucleation is dominant) and the crystal growth zone (where crystal growth is dominant), so as to control the CSD as a function of the residence time in each zone. In particular, the formation of aggregates could be promoted by increasing the residence time in the nucleation zone. Ultimately, the planar-OFC was able to produce smaller particles with significantly narrower CSDs than the traditional batch process. This is particularly important when small particle sizes are required, thus reducing manufacturing time and operating costs.

Keywords: planar; antisolvent crystallization; crystal size; pharmaceutical ingredient; active pharmaceutical; process

Journal Title: Chemical Engineering Research and Design
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.