LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Senna auriculata L. flower petal biomass: An alternative green biosorbent for the removal of fluoride from aqueous solutions

Photo from wikipedia

Abstract Fluoride contamination in groundwater is a major concern in many parts of India and all over the world. Researches paying attention for the removal of fluoride through the application… Click to show full abstract

Abstract Fluoride contamination in groundwater is a major concern in many parts of India and all over the world. Researches paying attention for the removal of fluoride through the application of biosorbents prepared from different parts of plants are finding greater scope and importance. The present research work focuses on Senna auriculata L., flower petal biomass as biosorbent, and evaluated its feasibility for fluoride ion elimination from aqueous solutions. Batch experiments were conducted to remove fluoride under different experimental conditions have been optimized for the maximum removal of fluoride; 80% removal was observed at pH: 6, sorbent dosage: 0.25 g/100 mL, time of agitation: 90 min, and initial concentration of the fluoride ions: 5 mg/L. Characterization studies of the biosorbent revealed its favorability towards the sorption of fluoride. In the isothermal modeling studies, Langmuir isotherm model was obeyed by the biosorption process with R2 value of 0.98 and from a kinetic perspective, the biosorption of fluoride onto the biosorbent observed the pseudo-second-order reaction with R2 value of 0.98. The developed biosorbent has been applied to real field fluoride-contaminated water samples and found to be successful.

Keywords: flower petal; senna auriculata; auriculata flower; removal fluoride; biosorbent

Journal Title: Acta Ecologica Sinica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.