LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms.

Photo by homajob from unsplash

In this review, we provide a broad overview of solution-phase synthesis of transition metal oxide nanocrystals (NCs), including a substantial catalog of published methods, and a unifying classification and discussion.… Click to show full abstract

In this review, we provide a broad overview of solution-phase synthesis of transition metal oxide nanocrystals (NCs), including a substantial catalog of published methods, and a unifying classification and discussion. Prevalent subcategories of solution-phase synthesis are delineated and general features are summarized. The diverse morphologies achievable by solution-phase synthesis are defined and exemplified. This is followed by sequential consideration of the solution-phase synthesis of first-row transition metal oxides. The common oxides of Ti, V, Mn, Fe, Co, Ni, Cu, and Zn are introduced; major crystal lattices are presented and illustrated; representative examples are explained; and numerous synthesis formulae are tabulated. Following this presentation of experimental studies, we present an introduction to theories of NC nucleation and growth. Various models of NC nucleation and growth are addressed, and important concepts determining the growth and structure of colloidal NCs are explained. Overall, this review provides an entry into systematic understanding of solution-phase synthesis of nanocrystals, with a reasonably comprehensive survey of results for the important category of transition metal oxide NCs.

Keywords: phase synthesis; solution phase; synthesis; transition metal

Journal Title: Advances in colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.