LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particles adsorbed at various non-aqueous liquid-liquid interfaces.

Photo by a2eorigins from unsplash

Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces… Click to show full abstract

Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (ε<3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour.

Keywords: non aqueous; liquid; water; particles adsorbed; liquid interfaces; oil

Journal Title: Advances in colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.