LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy.

Photo from wikipedia

The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs)… Click to show full abstract

The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs) and their composites for magnetic resonance (MR) imaging and photothermal therapy of cancer. Water dispersible and colloidally stable Fe3O4 NPs synthesized via controlled coprecipitation route, hydrothermal route and mild reduction route are introduced. Some of key strategies to improve the r2 relaxivity of Fe3O4 NPs and to enhance their uptake by cancer cells are discussed in detail. These aqueous-phase synthetic methods can also be applied to prepare Fe3O4 NP-based composites for dual-mode molecular imaging applications. More interestingly, aqueous-phase synthesized Fe3O4 NPs are able to be fabricated as multifunctional theranostic agents for multi-mode imaging and photothermal therapy of cancer. This review will provide some meaningful information for the design and development of various Fe3O4 NP-based multifunctional nanoplatforms for cancer diagnosis and therapy.

Keywords: phase synthesis; therapy; aqueous phase; synthesis iron; cancer

Journal Title: Advances in colloid and interface science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.