Artificial neural networks (ANNs) have been widely applied for the prediction of dye adsorption during the last decade. In this paper, the applications of ANN methods, namely multilayer feedforward neural… Click to show full abstract
Artificial neural networks (ANNs) have been widely applied for the prediction of dye adsorption during the last decade. In this paper, the applications of ANN methods, namely multilayer feedforward neural networks (MLFNN), support vector machine (SVM), and adaptive neuro fuzzy inference system (ANFIS) for adsorption of dyes are reviewed. The reported researches on adsorption of dyes are classified into four major categories, such as (i) MLFNN, (ii) ANFIS, (iii) SVM and (iv) hybrid with genetic algorithm (GA) and particle swarm optimization (PSO). Most of these papers are discussed. The further research needs in this field are suggested. These ANNs models are obtaining popularity as approaches, which can be successfully employed for the adsorption of dyes with acceptable accuracy.
               
Click one of the above tabs to view related content.