LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media.

Photo by viazavier from unsplash

Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the… Click to show full abstract

Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the coordination of the porphyrin ligand and its derivatives however remains a challenge for engineering new tunable Porph-MOF frameworks by self-assembly methods. The key challenges exist in the following respects: (i) collapse of the large open pores of Porph-MOFs during synthesis, (ii) deactivation of unsaturated metal-sites (UMCs) by axial coordination, and (iii) the tendency of both coordinated moieties (at peripheral meso- and beta-carbon sites) and the N4-pyridine core to coordinate with metal cations. In this respect, this review covers the advances in the design of Porph-MOFs relative to their counterpart covalent organic frameworks (Porph-COFs). The potential utility of custom-designed porphyrin/metalloporphyrins ligands is highlighted. Synthesis strategies of Porph-MOFs are also illustrated with modular design of hybrid guest@host composites (either Porph@MOFs or guest@Porph-MOFs) with exceptional topologies and stability. This review summarizes the synergistic benefits of coordinated porphyrin ligands and functional guest molecules in Porph-MOF composites for enhanced catalytic performance in various redox applications. This review shed lights on the engineering of new tunable hetero-metals open active sites within (metallo)porphyrin-MOFs as out-of-the-box platforms for enhanced catalytic processes in chemical and biological media.

Keywords: porph mofs; metal; mofs; biological media; organic frameworks; synthesis

Journal Title: Advances in colloid and interface science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.