Use of protein-based nanovehicles has been well recognized to be one of the most effective strategies to improve water dispersibility, stability and bioavailability of nutraceuticals or bioactive ingredients. Thanks to… Click to show full abstract
Use of protein-based nanovehicles has been well recognized to be one of the most effective strategies to improve water dispersibility, stability and bioavailability of nutraceuticals or bioactive ingredients. Thanks to their health-benefiting effects and unique assembly behavior, soy proteins seem to be the perfect food proteins for fabricating nanovehicles in this regard. This review presents the state-of-art knowledge about the assembly of soy proteins into nano-architectures, e. g., nanoparticles, nanocomplexes or nanogels, induced by different physicochemical strategies and approaches. The strategies to trigger the assembly of soy proteins into a variety of nano-architectures are highlighted and critically reviewed. Such strategies include heating, enzymatic hydrolysis, pH shift, urea or ethanol treatment, reduction, and static high pressure treatment. The self-assembly behavior of soy proteins (native or denatured) is also reviewed. Besides the assembly of proteins alone, soy proteins can co-assemble with polysaccharides to form versatile nano-architectures, through different processes, e.g., heating or ultrasonication. Finally, recent progress in the development of assembled soy protein nano-architectures as nanovehicles for hydrophobic nutraceuticals is briefly summarized. With the fast increasing health awareness for natural and safe functional foods, this review is of crucial relevance for providing an important strategy to develop a kind of novel soy protein-based functional foods with dual-function health effects from soy proteins and nutraceuticals.
               
Click one of the above tabs to view related content.