Abstract The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC) propulsion system, and the control methods of unsteady flow were… Click to show full abstract
Abstract The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC) propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region.
               
Click one of the above tabs to view related content.