LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-triggered adaptive control for attitude tracking of spacecraft

Photo by sadswim from unsplash

Abstract Plug-and-play technology is an important direction for future development of spacecraft and how to design controllers with less communication burden and satisfactory performance is of great importance for plug-and-play… Click to show full abstract

Abstract Plug-and-play technology is an important direction for future development of spacecraft and how to design controllers with less communication burden and satisfactory performance is of great importance for plug-and-play spacecraft. Considering attitude tracking of such spacecraft with unknown inertial parameters and unknown disturbances, an event-triggered adaptive backstepping controller is designed in this paper. Particularly, a switching threshold strategy is employed to design the event-triggering mechanism. By introducing a new linear time-varying model, a smooth function, an integrable auxiliary signal and a bound estimation approach, the impacts of the network-induced error and the disturbances are effectively compensated for and Zeno phenomenon is successfully avoided. It is shown that all signals of the closed-loop system are globally uniformly bounded and both the attitude tracking error and the angular velocity tracking error converge to zero. Compared with conventional control schemes, the proposed scheme significantly reduces the communication burden while providing stable and accurate response for attitude maneuvers. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

Keywords: spacecraft; tracking spacecraft; attitude tracking; event triggered

Journal Title: Chinese Journal of Aeronautics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.