Abstract Presence of a cavity changes the mean and fluctuating pressure distributions inside and near the cavity. For cylindrical cavity flow, the diameter-to-depth ratio is the dominant factor. In this… Click to show full abstract
Abstract Presence of a cavity changes the mean and fluctuating pressure distributions inside and near the cavity. For cylindrical cavity flow, the diameter-to-depth ratio is the dominant factor. In this study, flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses ahead of the cavity. The effect of Reynolds number based on incoming boundary layer thickness on characteristics of mean and fluctuating pressure distributions is addressed. Pressure sensitive paint was also used to visualize the mean surface pressure patterns. The effect of Reynolds number on the classification of compressible cylindrical cavity flow and self-sustained oscillating frequency is not significant. An increase in Reynolds number results in a reduction in the value of differential pressure or momentum flux near the rear edge.
               
Click one of the above tabs to view related content.