Abstract Grid pattern was textured on Ti-6Al-4V alloy (TC4) substrate surface by nanosecond laser system. Laser joining of carbon fiber reinforced thermoplastic composite (CFRTP) to TC4 joints were performed, and… Click to show full abstract
Abstract Grid pattern was textured on Ti-6Al-4V alloy (TC4) substrate surface by nanosecond laser system. Laser joining of carbon fiber reinforced thermoplastic composite (CFRTP) to TC4 joints were performed, and the effect of texture grid depth was investigated. The contact angle of molten CFRTP on textured TC4 surface was measured and the tensile-shear force was tested. The fracture surface and interface morphology were observed. The results indicated that the wettability of molten CFRTP on TC4 surface improved remarkably after laser textured TC4. Shear force of CFRTP/TC4 joints was increased by 156% after laser textured TC4 surface. When the depth of grid was deeper than 100 μm, contact angle decreased and incomplete filling of molten CFRTP in grid occurred, the shear force thus decreased gradually. Resin-carbon fibers mixture was adhered on the fracture surface of TC4, and the variation tendency of adhesion ratio was consistent with that of shear force. TC4 matrix was exfoliated from substrate and adhered at the fracture surface of CFRTP, indicating stronger mechanical interlocking occurred at the joining interface after laser textured TC4 surface. Beside mechanical interlocking, compound layer consisted of CTi0.42V1.58 carburization phase was also confirmed at interface, suggesting that chemical bonding also occurred at the joining interface.
               
Click one of the above tabs to view related content.