LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol

Photo by indulachanaka from unsplash

Abstract The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene… Click to show full abstract

Abstract The alkylation of benzene with isopropanol over beta-zeolite is a more cost-effective solution to cumene production. During the benzene alkylation cycles, the cumene selectivity slowly increased, while the benzene conversion presented the sharp decrease due to catalyst deactivation. The deactivation mechanism of beta-zeolite catalyst was investigated by characterizing the fresh and used catalysts. The XRD, SEM and TEM results show that the crystalline and particle size of the beta-zeolite catalyst almost remained stable during the alkylation cycles. The drop in catalytic activity and benzene conversion could be explained by the TG, BET, NH 3 -TPD and GC–MS results. The organic matters mainly consisted of ethylbenzene, p -xylene and 1-ethyl-3-(1-methyl) benzene produced in the benzene alkylation deposited in the catalyst, which strongly reduced the specific surface area of beta-zeolite catalyst. Moreover, during the reaction cycles, the amount of acidity also significantly decreased. As a result, the catalyst deactivation occurred. To maintain the catalytic performance, the catalyst regeneration was carried out by using ethanol rinse and calcination. The deactivated catalyst could be effectively regenerated by the calcination method and the good catalytic performance was obtained.

Keywords: deactivation; beta zeolite; benzene; zeolite catalyst; alkylation; catalyst

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.