LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of highly active MCM-41 supported Ni2P catalysts and its dibenzothiophene HDS performanc

Photo by mattpalmer from unsplash

Abstract Highly active MCM-41 supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by two different phosphorus sources, in which the surface of Ni2P catalysts were modified by air instead… Click to show full abstract

Abstract Highly active MCM-41 supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by two different phosphorus sources, in which the surface of Ni2P catalysts were modified by air instead of being passivated by O2/N2 mixture. In addition, the catalysts need not be activated with flowing H2 (30 ml·min− 1) at 500 °C for 2 h prior to reaction as traditional method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2-adsorption specific surface area measurements and CO chemisorption were used to characterize the resulting catalysts. The effect of modification with air on the surface of the catalysts for HDS performance was investigated. Results showed that the surface modification with air can promote the formation of smaller Ni2P particles and more active Ni sites on surface of catalysts. At 3.0 MPa and 613 K, the dibenzothiophene (DBT) conversion of the catalysts modified with air was 98.7%, which was 7.1% higher than that of catalyst passivated by O2/N2 mixture. The higher activities of Ni2P(x)/M41-O catalysts can be attributed to the smaller Ni2P particles sizes and the increased hydrogen dissociation activity due to the surface modification.

Keywords: mcm supported; air; highly active; ni2p catalysts; active mcm

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.