LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal conductivity of natural rubber nanocomposites with hybrid fillers

Photo by erol from unsplash

Abstract Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes (CNTs) and carbon black (CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide (H2O2) and… Click to show full abstract

Abstract Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes (CNTs) and carbon black (CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide (H2O2) and distilled water (H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman Spectroscopy, and transmission electron microscopy (TEM). It shows that hydroxyl (OH ) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr (phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites; the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.

Keywords: spectroscopy; natural rubber; rubber nanocomposites; thermal conductivity; conductivity

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.