LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance evaluation of polyamide nanofiltration membranes for phosphorus removal process and their stability against strong acid/alkali solution

Photo by jordanmcdonald from unsplash

Abstract In this study, a quantitative performance of three commercial polyamide nanofiltration (NF) membranes (i.e., NF, NF90, and NF270) for phosphorus removal under different feed conditions was investigated. The experiments… Click to show full abstract

Abstract In this study, a quantitative performance of three commercial polyamide nanofiltration (NF) membranes (i.e., NF, NF90, and NF270) for phosphorus removal under different feed conditions was investigated. The experiments were conducted at different feed phosphorus concentrations (2.5, 5, 10, and 15 mg·L−1) and elevated pHs (pH 1.5, 5, 10, and 13.5) at a constant feed pressure of 1 MPa using a dead-end filtration cell. Membrane rejection against total phosphorus generally increased with increasing phosphorus concentration regardless of membrane type. In contrast, the permeate flux for all the membranes only decreased slightly with increasing phosphorus concentration. The results also showed that the phosphorus rejections improved while water flux remained almost unchanged with increasing feed solution pH. When the three membranes were exposed to strong pHs (pH 1.5 and 13.5) for a longer duration (up to 6 weeks), it was found that the rejection capability and water flux of the membranes remained very similar throughout the duration, except for NF membrane with marginal decrement in phosphorus rejection. Adsorption study also revealed that more phosphorus was adsorbed onto the membrane structure at alkaline conditions (pH 10 and 13.5) compared to the same membranes tested at lower pHs (pH 1.5 and 5). In conclusion, NF270 membrane outperformed NF and NF90 membranes owing to its desirable performance of water flux and phosphorus rejection particularly under strong alkali solution. The NF270 membrane achieved 14.0 L·m−2·h−1 and 96.5% rejection against 10 mg·L−1 phosphorus solution with a pH value of 13.5 at the applied pressure of 1 MPa.

Keywords: polyamide nanofiltration; phosphorus; performance; nanofiltration membranes; rejection; solution

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.