LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CFD study on double- to single-loop flow pattern transition and its influence on macro mixing efficiency in fully baffled tank stirred by a Rushton turbine

Photo by jjying from unsplash

Abstract For a fully baffled tank stirred by a Rushton turbine (RT), the flow pattern will change from double- to single-loop as the off bottom clearance (C) of the RT… Click to show full abstract

Abstract For a fully baffled tank stirred by a Rushton turbine (RT), the flow pattern will change from double- to single-loop as the off bottom clearance (C) of the RT decreases from one third of the tank diameter. Such a flow pattern transition as well as its influence on the macro mixing efficiency was investigated via CFD simulation. The transient sliding mesh approach coupled with the standard k-e turbulence model could correctly and efficiently reproduce the reported critical C range where the flow pattern changes. Simulation results indicated that such a critical C range varied hardly with the impeller rotation speed but decreased significantly with increasing impeller diameter. Small RTs are preferable to generating the single-loop flow pattern. A mechanism of the flow pattern transition was further proposed to explain these phenomena. The discharge stream from the RT deviates downwards from the horizontal direction for small C values; if it meets the tank wall first, the double-loop will form; if it hits the tank bottom first, the single-loop will form. With the flow pattern transition, the mixing time decreased by about 35% at the same power input (P), indicating that the single-loop flow pattern was more efficient than the double-loop to enhance the macro mixing in the tank. A comparison was further made between the single-loop RT and pitched blade turbine (PBT, 45°) from macro mixing perspective. The single-loop RT was found to be less efficient than the PBT and usually required 60% more time to achieve the same level of macro mixing at the same P.

Keywords: flow pattern; single loop; flow; macro mixing

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.