LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CO2 absorption performance in a rotating disk reactor using DBU-glycerol as solvent

Photo by julianhochgesang from unsplash

Abstract Gas–liquid mass transfer of rotating disk reactor was studied in CO2 absorption using 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU)-glycerol solution as solvent. Effects of the rotating disk structure and various operation parameters on… Click to show full abstract

Abstract Gas–liquid mass transfer of rotating disk reactor was studied in CO2 absorption using 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU)-glycerol solution as solvent. Effects of the rotating disk structure and various operation parameters on the CO2 absorption rate and CO2 removal efficiency were investigated. The rotating disk with optimal holes is conducive to mass transfer of CO2 and the formation of thin liquid film at the opening increases the gas–liquid contact area. With the increase of rotating speed, the liquid flow pattern on the rotating disk surface changes from thin film flow to separated streams and creates extra liquid lines attached to the rim of the disk, which leads to a very complicated change on the CO2 absorption rate and CO2 removal efficiency. The overall gas-phase mass transfer coefficient increases 138% as the rotating speed increasing from 250 to 1400 r·min−1. Increasing temperature from 298 to 338 K can enhance the CO2 absorption rate due to lowering the viscosity of the solvent. The rate-determined step for the absorption is focused on the gas side. The rotating disk reactor can effectively enhance the absorption of CO2 with viscous DBU-glycerol solvents.

Keywords: co2 absorption; disk; rotating disk; disk reactor; absorption

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.