LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture

Photo from wikipedia

Abstract Amines in porous materials have been employed as active species for the selective CO2 adsorption from natural gas because of their target-specific interactions. Nevertheless, it is difficult to modulate… Click to show full abstract

Abstract Amines in porous materials have been employed as active species for the selective CO2 adsorption from natural gas because of their target-specific interactions. Nevertheless, it is difficult to modulate such strong interactions to reach a high efficiency in the adsorption processes. Herein, we fabricated light-responsive adsorbents with tunable adsorbent–adsorbate interactions for CO2 capture. The adsorbents were synthesized by introducing primary and secondary amines into a mesoporous silica that had been grafted with azobenzene groups on the surfaces. The target-specific amine sites render the adsorbents significantly selective in the uptake of CO2 over CH4, and the azobenzene groups were used as light-responsive switches to influence the adsorbent–adsorbate interactions. The adsorbents can freely adsorb CO2 when the azobenzene groups are in the trans state. Ultraviolet-light irradiation makes the azobenzene groups transform to the cis configuration, which greatly hinders amines in the uptake of CO2. The caused difference of adsorption capacity can reach 34.9%. The alternative irradiation by ultraviolet- and visible-light can lead to a recyclable regulation on adsorption performance. The changes of the electrostatic potentials of amines are responsible for the light-induced regulation on adsorption.

Keywords: adsorption; selective co2; light responsive; adsorbent adsorbate; adsorbate interactions

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.