LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into High-Efficient Removal of Tetracycline by a Codoped Mesoporous Carbon Adsorbent

Photo from wikipedia

Abstract Adsorbents with simple preparation and high surface area have become increasingly prevalent for the removal of organic contaminants. Herein, a carbon nanoplate codoped by Co and N elements with… Click to show full abstract

Abstract Adsorbents with simple preparation and high surface area have become increasingly prevalent for the removal of organic contaminants. Herein, a carbon nanoplate codoped by Co and N elements with abundant ordered mesoporous (Co/N-MCs) was applied as an adsorbent for tetracycline removal. Taking integrated advantages of ordered mesopores on carbon-based structures and N-doping inducing the strengthened π–π dispersion and generation of pyridinic N, as well as cobaltic nanoparticles embedded in carbon nanoplates, the Co/N-MCs was tailored for high efficiently absorbing tetracycline via π-π interaction, Lewis acid-base interaction, metal complexation and electrostatic attraction. The Co/N-MCs had the advantages of high surface area, porous structure, plenty adsorption sites, and easy separation. As such, the as-prepared Co/N-MCs adsorbents significantly enhanced tetracycline removal performance with a maximum adsorption capacity of 344.83 mg·g-1 at pH 6 and good reusability, which was finally applied to removal tetracycline from tap water sample. Furthermore, the adsorption process towards tetracycline hydrochloride could be well attributed to the pseudo-second-order kinetic and Langmuir isotherm models. Compared with traditional carbon-based adsorbents, it owns a simpler synthesis method and a higher adsorption capacity, as well as it is a promising candidate for water purification.

Keywords: adsorption; carbon; removal; removal tetracycline; insights high

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.