LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous degradation of RhB and Reduction of Cr(VI) by MIL-53(Fe)/PANI with the mediation of organic acid

Photo from wikipedia

Abstract MIL-53(Fe)/polyaniline composite was prepared by in situ depositing PANI on the surface of MIL-53(Fe) and their catalytic performances on the simultaneous removal of RhB and Cr(VI) were investigated. The… Click to show full abstract

Abstract MIL-53(Fe)/polyaniline composite was prepared by in situ depositing PANI on the surface of MIL-53(Fe) and their catalytic performances on the simultaneous removal of RhB and Cr(VI) were investigated. The elimination efficiency of both RhB and Cr(VI) reached more than 98% under pH=2 where hydrochloric acid and citric acid were used to adjust the pH. The results indicated that MIL-53(Fe)/PANI revealed an obvious pH response to the degradation of RhB, while citric acid promoted the Cr(VI) photoreduction. UV-Vis spectra, EIS, and photocurrent response experiments showed that MIL-53(Fe)/PANI had a better light response and carrier migration ability than MIL-53(Fe). The transient absorption spectra also exhibited that the lifetimes of photo-generated carriers were prolonged after the conductive polymer deposition on the MIL-53(Fe) surface. Scavenger experiments demonstrated that the main active species were •O2- and •OH. Combined with activity evaluation results, and the possible photocatalytic mechanism of MIL-53(Fe)/PANI on RhB oxidation and Cr(VI) reduction was proposed. The addition of conductive polymer can effectively improve the light response of the catalyst under acidic conditions, and meanwhile citric acid also provided a new mediation for the synergistic degradation of multiple pollutants. Good activity and stability of the catalysts made the scale-up purification of acid water feasible under UV-Vis light.

Keywords: degradation; rhb; acid; mil pani

Journal Title: Chinese Journal of Chemical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.