LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid phase transitions of spreading dynamics in multiplex networks

Photo by des0519 from unsplash

Abstract In this paper, we study the spreading dynamics of social behaviors and focus on heterogenous responses of individuals depending on whether they realize the spreading or not. We model… Click to show full abstract

Abstract In this paper, we study the spreading dynamics of social behaviors and focus on heterogenous responses of individuals depending on whether they realize the spreading or not. We model the system with a two-layer multiplex network, in which one layer describes the spreading of social behaviors and the other layer describes the diffusion of the awareness about the spreading. We use the susceptible-infected-susceptible (SIS) model to describe the dynamics of an individual if it is unaware of the spreading of the behavior. While when an individual is aware of the spreading of the social behavior its dynamics will follow the threshold model, in which an individual will adopt a behavior only when the fraction of its neighbors who have adopted the behavior is above a certain threshold. We find that such heterogenous reactions can induce intriguing dynamical properties. The dynamics of the whole network may exhibit hybrid phase transitions with the coexistence of continuous phase transition and bi-stable states. Detailed study of how the diffusion of the awareness influences the spreading dynamics of social behavior is provided. The results are supported by theoretical analysis.

Keywords: phase; phase transitions; hybrid phase; dynamics multiplex; spreading dynamics; transitions spreading

Journal Title: Chinese Journal of Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.