LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-pot exfoliation of kaolinite by solvothermal cointercalation

Photo by bist31 from unsplash

Abstract A one-pot solvothermal synthesis procedure of kaolinite-cetyltrimethylammonium chloride complex directly from kaolinite-urea precursor to produce kaolinite nanoscrolls is reported. Compared to the commonly applied solution/stirring method, the applied solvothermal… Click to show full abstract

Abstract A one-pot solvothermal synthesis procedure of kaolinite-cetyltrimethylammonium chloride complex directly from kaolinite-urea precursor to produce kaolinite nanoscrolls is reported. Compared to the commonly applied solution/stirring method, the applied solvothermal synthesis is simple, convenient and effective, requiring an order of magnitude less time and reagent volume. The type of precursor, as well as the reaction time and temperature significantly affect the exfoliation rate of kaolinite. In addition, a strong correlation is demonstrated between the effectiveness of exfoliation and the interaction between the guest molecules and the octahedral sheets of kaolinite. The present findings reveal that the eco-friend kaolinite-urea precursor is favorable for direct intercalation of cetyltrimethylammonium chloride from methanol solution at 100 °C (and at equilibrium vapor pressure of methanol), and that the formed kaolinite-cetyltrimethylammonium chloride complex can easily transform into kaolinite nanoscrolls. This conceptually new method utilizing supposed cointercalation processes can open the way to a new series of cost-efficient chemical routes for the direct exfoliation of kaolinite.

Keywords: cetyltrimethylammonium chloride; exfoliation kaolinite; cointercalation; one pot; exfoliation

Journal Title: Applied Clay Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.