Abstract Catalytic transfer hydrogenation is an alternative catalytic approach for the reduction of carbonyl groups, instead of the use of dihydrogen gas. In this sense, a series of catalysts has… Click to show full abstract
Abstract Catalytic transfer hydrogenation is an alternative catalytic approach for the reduction of carbonyl groups, instead of the use of dihydrogen gas. In this sense, a series of catalysts has been prepared by thermal treatment of layered double hydroxides, hydrotalcite type, of Mg(II) and Fe(III), with different Mg/Fe molar ratios. The resulting mixture of metal oxides was characterized by X-ray diffraction, TEM, N2 adsorption-desorption, CO2-TPD, NH3-TPD and XPS, and then catalysts were tested in the Meenwein-Ponndorf-Verley (MPV) reduction of furfural to obtain furfuryl alcohol. The catalytic results show that the catalyst with a Mg/Fe molar ratio of 3 allows reaching the highest furfural conversion at a lower reaction time, with a FOL yield close to 90% after 6 h of reaction at 443 K. The detailed analysis of these catalysts also revealed that the basicity plays a more predominant role in the MPV reaction than acid sites.
               
Click one of the above tabs to view related content.