Background: Periprosthetic femoral fracture is a severe complication of total hip arthroplasty. A previous review published in 2011 summarised the biomechanical studies regarding periprosthetic femoral fracture and its fixation techniques.… Click to show full abstract
Background: Periprosthetic femoral fracture is a severe complication of total hip arthroplasty. A previous review published in 2011 summarised the biomechanical studies regarding periprosthetic femoral fracture and its fixation techniques. Since then, there have been several commercially available fracture plates designed specifically for the treatment of these fractures. However, several clinical studies still report failure of fixation treatments used for these fractures. Methods: The current literature on biomechanical models of periprosthetic femoral fracture fixation since 2010 to present is reviewed. The methodologies involved in the experimental and computational studies of periprosthetic femoral fracture fixation are described and compared with particular focus on the recent developments. Findings: Several issues raised in the previous review paper have been addressed by current studies; such as validating computational results with experimental data. Current experimental studies are more sophisticated in design. Computational studies have been useful in studying fixation methods or conditions (such as bone healing) that are difficult to study in vivo or in vitro. However, a few issues still remain and are highlighted. Interpretation: The increased use of computational studies in investigating periprosthetic femoral fracture fixation techniques has proven valuable. Existing protocols for testing periprosthetic femoral fracture fixation need to be standardised in order to make more direct and conclusive comparisons between studies. A consensus on the ‘optimum’ treatment method for periprosthetic femoral fracture fixation needs to be achieved. HighlightsStudies using more sophisticated biomechanical testing methods have been developed.Experimental methods in conjunction with computational methods have proven useful.Consensus on optimum treatment methods needs to be achieved.Studies using more osteoporotic bone models is required.Effect of cemented vs uncemented hip stems on fracture fixation needs further study.
               
Click one of the above tabs to view related content.