LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control.

Photo from wikipedia

BACKGROUND Musculoskeletal modelling is used to assess musculoskeletal loading during gait. Linear scaling methods are used to personalize generic models to each participant's anthropometry. This approach introduces simplifications, especially when… Click to show full abstract

BACKGROUND Musculoskeletal modelling is used to assess musculoskeletal loading during gait. Linear scaling methods are used to personalize generic models to each participant's anthropometry. This approach introduces simplifications, especially when used in paediatric and/or pathological populations. This study aimed to compare results from musculoskeletal simulations using various models ranging from linear scaled to highly subject-specific models, i.e., including the participant's musculoskeletal geometry and electromyography data. METHODS Magnetic resonance images (MRI) and gait data of one typically developing child and three children with cerebral palsy were analysed. Musculoskeletal simulations were performed to calculate joint kinematics, joint kinetics, muscle forces and joint contact forces using four modelling frameworks: 1) Generic-scaled model with static optimization, 2) Generic-scaled model with an electromyography-informed approach, 3) MRI-based model with static optimization, and 4) MRI-based model with an electromyography-informed approach. FINDINGS Root-mean-square-differences in joint kinematics and kinetics between generic-scaled and MRI-based models were below 5° and 0.15 Nm/kg, respectively. Root-mean-square-differences over all muscles was below 0.2 body weight for every participant. Root-mean-square-differences in joint contact forces between the different modelling frameworks were up to 2.2 body weight. Comparing the simulation results from the typically developing child with the results from the children with cerebral palsy showed similar root-mean-square-differences for all modelling frameworks. INTERPRETATION In our participants, the impact of MRI-based models on joint contact forces was higher than the impact of including electromyography. Clinical reasoning based on overall root-mean-square-differences in musculoskeletal simulation results between healthy and pathological participants are unlikely to be affected by the modelling choice.

Keywords: cerebral palsy; root mean; effect personalized; generic scaled; geometry

Journal Title: Clinical biomechanics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.